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Representation of the input-output relationship ot a physical system.

Input Physical Output
N System

Acceleration Car Position

> Voltage Circuit Current >

Deposit Bank Account Balance
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear



Continuous-time and Discrete Time

Input/output vectors are continuous-time signals

{U(t)}teR

{u[k]}k:ez ®

System >

" Discrete-time system

R Real numbers ®
Z, Integers

* Input/output vectors are discrete-time signals
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" Continuous-time system

— Mass-spring-damper system K B
My"(t) = f(t) — By'(t) — Ky(t) M| .
— RLC circuit v
v(0) = Ri(0) + L2921 11 0y f(t)l y(t)
i(t
v(t)] t) R 2 1
" Discrete-time System C

— Digital computer

— Daily balance of a bank account

y[k] : balance at k-th day
ylk+1] = (1 + a)ylk] + u[k] u[k] : deposit/withdrawal

a : interest rate
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear
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Memoryless system: Current output depends on ONLY current input.
Causal System: Current output depends on current and past input.

Noncausal system: Current output depends on future input.

past | future System pas:t ‘ future

current current
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" Memoryless system

— Spring: input f{#), output x(?) =¥ f(t) = kx(t)

— Resistor: input »(?), output 7(2) = v(t) = Ri(t)

= (Causal System

— Input: acceleration; output: position of a car

Current position depends on not only current acceleration, but also all the past accelerations.

" Noncausal System does not exist in real world; it exists only

mathematically. (We only consider causal systems)
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear



Lumped and Distributed Page 10 of 26

For a causal system,
(Current/future input)

(past input) } Current/Future output

To Memorize this info, we use a state vector x(7;)

t,. current time
, x(%y) o
System

Lumped system: State vector is finite dimensional
Distributed system: State vector is infinite dimensional
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* Lumped System

1 meter
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear
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x(to)

For a causal system, u(),t > to

} =2 y(t),t =t

Time-invariant system: For any time shift T,

x(tog+T) }
— >
u(t=T),t >ty +T PyE-T)tzt+T

Time-varying system: Not time-invariant

m(to);/‘\u(@ N v
to ——— System |—— to
g;(to+T):/-\u/(t 7 [\y(t/— T)

to to+T tO tO_I_T
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= (Car, Rocket etc.

il

S

If we regard M to be constant

(even though M changes very
slowly), then this system is
time-1nvariant.
My"(t) = u(t)
(Laplace applicable)

=il

-

If we regard M to be Changing
(due to fuel consumption),

then this system is
time-varying.

M(t)y" (t) = u(t)
(Laplace not applicable)
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= Continuous-time and discrete-time
" Memoryless, causal and noncausal
* Lumped and distributed

* Time-invariant and time-varying

" [.inear and nonlinear
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For a causal system,

x; (to)

. S 4 i
u;(t),t = to} 2y (), t=>ty,i=1,2

Linear system: A system satisfying superposition property

ayx1(Eo) + azx,(8o) }
ajuy + axuy(t), t =ty Da,y1(8) + azy,(t),

t = toval,az ER

Nonlinear system: A system that does not satisty superposition property.
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= All systems in real world are nonliear.
f(t) =Ky(t)=> This linear relation holds only for small y(?) and £{?)
* However, linear approximation 1s often good enough for control purposes

= Linearization: approximation of a nonlinear system by linear system around some
operating point



State Space Model
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Continuous-time Discrete-time
:d’;f) — A(D)x(t) + B{Ou(t) {x[k + 1] = A[k]x[k] + B[k]u[k]
|y () = C(©x(®) + D(D)u(®) ylkl = Clilxlie] + DlkJulk]

t € R (Real number) k € Z (Integers)

X: State vector

u: input vector

Y. output vector

) System |___ | System |__
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" The first equation, called state equation, is a tirst order ordinary differential (CT case)

and difference (DT case) equation.
* The second equation, called output equation, is an algebraic equation.

= Two equations are called state-space model.

" [f a system is fzme-invariant, the matrices A, B, C, D are constant (independent of
time).

" Pay attention to szges of matrices and vectors. They must by always compatible!
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Consider a general #th-order model of a dynamic system:

d"y(t) d" 1y(t) dy(t) o ahu) A1)
qen + An—1 qrn-1 + ... + aq dt + aoy(t) = bn Tin + bn—l —nm 4 et
d
bl l;it) + boU(t)

Assuming all initial conditions are all zeros.

Goal: to dertve a systematic procedure that transforms a differential equation of order 7 to
a state space form representing a system of # first-order differential equations.
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Consider a dynamic system represented by the following differential equation:

y(6) + 6y(5) — 2y(4) + y(z) — Sy(l) 4+ 3y — 7u(3) + u(l) + 4u

where y® stands for the #th detivative: YO = dly/dt. Find the state space model of the
above system.
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" By Newton’s law, we have

My (t) = u(t)

#: Input force

_J: output position

» Define state variables: x{(t) = y(t), x, = y(t)

" Then,

(
f)°C1 (t) = y1(t) = x,(¢t) d [x1 (t) _ 0 1 xl (©) [ ]u(t)
X, (t) = y(t) = %U(t) > dt | x,(t) xz(t)] -

_ X (0
L y0=n@ | y@0=0 0[]

A
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" By Newton’s law

My(t) = u(t) — By(t) — ky(t)

" Define state variables

x1(t) = y(t),x2(t) = y(t)

j% li;ﬁi%] =M —mym [28] aIEe
yo =1 of[2®
L x5 (t)




RLC Circuit Page 25 of 26

" u(?): input voltage
J(?): output voltage
* By Kichhhotf’s voltage law

u(®) = Ri(®) + LE2 + 2 [ i(r)dr - [0

Define State Variables (current for inductor, voltage for capacitor):

x1 (1) = i(), 2,(t) = < [ i(D)dr

(d 1x,(t) R/L  —1/L][x.(t)
gleol=lve ol o
x1(t)

yo =0 1

A




dhe End!!



