Mechatronic Modeling and Design with Applications in Robotics

Analytical Modeling (Part 1)

Representation of the input-output relationship of a physical system.

- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

Input/output vectors are continuous-time signals

- Discrete-time system
- Input/output vectors are discrete-time signals
- Continuous-time system
- Mass-spring-damper system

$$
M y^{\prime \prime}(t)=f(t)-B y^{\prime}(t)-K y(t)
$$

- RLC circuit
$v(t)=R i(t)+L \frac{d i(t)}{d t}+\frac{1}{\mathrm{C}} \int i(t) d t$
- Discrete-time System
- Digital computer
- Daily balance of a bank account
$y[k+1]=(1+a) y[k]+u[k]$

$y[k]$: balance at k-th day $u[k]$: deposit/withdrawal a : interest rate
- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

Memoryless system: Current output depends on ONLY current input.
Causal System: Current output depends on current and past input.
Noncausal system: Current output depends on future input.

Example

- Memoryless system
- Spring: input $f(t)$, output $x(t) \rightarrow f(t)=k x(t)$
- Resistor: input $v(t)$, output $i(t) \rightarrow v(t)=\operatorname{Ri}(t)$
- Causal System
- Input: acceleration; output: position of a car

Current position depends on not only current acceleration, but also all the past accelerations.

- Noncausal System does not exist in real world; it exists only mathematically. (We only consider causal systems)
- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

For a causal system, (Current/future input) (past input)

To Memorize this info, we use a state vector $x\left(t_{0}\right)$

Lumped system: State vector is finite dimensional
Distributed system: State vector is infinite dimensional

Example

- Lumped System

- Distributed System

Model Classification

- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

For a causal system, $\left.\begin{array}{c}x\left(t_{0}\right) \\ u(t), t \geq t_{0}\end{array}\right\} \rightarrow y(t), t \geq t_{0}$
Time-invariant system: For any time shift T,

$$
\left.\begin{array}{c}
x\left(t_{0}+T\right) \\
u(t-T), t \geq t_{0}+T
\end{array}\right\} \Rightarrow y(t-T), t \geq t_{0}+T
$$

Time-varying system: Not time-invariant

- Car, Rocket etc.

If we regard M to be constant (even though M changes very slowly), then this system is time-invariant.

$$
M y^{\prime \prime}(t)=u(t)
$$

(Laplace applicable)

If we regard M to be Changing (due to fuel consumption), then this system is time-varying.

$$
M(t) y^{\prime \prime}(t)=u(t)
$$

(Laplace not applicable)

Model Classification

- Continuous-time and discrete-time
- Memoryless, causal and noncausal
- Lumped and distributed
- Time-invariant and time-varying
- Linear and nonlinear

Linear and Nonlinear

For a causal system,

$$
\left.\begin{array}{c}
x_{i}\left(t_{0}\right) \\
u_{i}(t), t \geq t_{0}
\end{array}\right\} \Rightarrow y_{i}(t), t \geq t_{0}, i=1,2
$$

Linear system: A system satisfying superposition property

$$
\left.\begin{array}{l}
\alpha_{1} x_{1}\left(t_{0}\right)+\alpha_{2} x_{2}\left(t_{0}\right) \\
\alpha_{1} u_{1}+\alpha_{2} u_{2}(t), t \geq t_{0}
\end{array}\right\} \rightarrow \alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t),
$$

Nonlinear system: A system that does not satisfy superposition property.

Remarks

- All systems in real world are nonliear.

$$
f(t)=K y(t) \rightarrow \quad \text { This linear relation holds only for small } y(t) \text { and } f(t)
$$

- However, linear approximation is often good enough for control purposes
- Linearization: approximation of a nonlinear system by linear system around some operating point

State Space MIodel

Linear State-Space Models

Continuous-time
$\left\{\begin{array}{l}\frac{d x(t)}{d t}=A(t) x(t)+B(t) u(t) \\ y(t)=C(t) x(t)+D(t) u(t)\end{array}\right.$
$t \in \mathbb{R}$ (Real number)

Discrete-time

$$
\left\{\begin{array}{c}
x[k+1]=A[k] x[k]+B[k] u[k] \\
y[k]=C[k] x[k]+D[k] u[k]
\end{array}\right.
$$

$$
k \in \mathbb{Z} \text { (Integers) }
$$

$$
\begin{aligned}
& \mathrm{x}: \text { state vector } \\
& \mathrm{u}: \text { input vector } \\
& \mathrm{y}: \text { output vector }
\end{aligned}
$$

- The first equation, called state equation, is a first order ordinary differential (CT case) and difference (DT case) equation.
- The second equation, called output equation, is an algebraic equation.
- Two equations are called state-space model.
- If a system is time-invariant, the matrices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are constant (independent of time).
- Pay attention to sizes of matrices and vectors. They must by always compatible!

Consider a general n th-order model of a dynamic system:
$\frac{d^{n} y(t)}{d t^{n}}+a_{n-1} \frac{d^{n-1} y(t)}{d t^{n-1}}+\cdots+a_{1} \frac{d y(t)}{d t}+a_{0} y(t)=b_{n} \frac{d^{n} u(t)}{d t^{n}}+b_{n-1} \frac{d^{n-1} u(t)}{d t^{n-1}}+\cdots+$
$b_{1} \frac{d u(t)}{d t}+b_{0} u(t)$ Assuming all initial conditions are all zeros.

Goal: to derive a systematic procedure that transforms a differential equation of order n to a state space form representing a system of n first-order differential equations.

Example

Consider a dynamic system represented by the following differential equation:

$$
y^{(6)}+6 y^{(5)}-2 y^{(4)}+y^{(2)}-5 y^{(1)}+3 y=7 u^{(3)}+u^{(1)}+4 u
$$

where $y^{(i)}$ stands for the i th derivative: $y^{(i)}=d^{i} y / d t$. Find the state space model of the above system.

- By Newton's law, we have

$$
M \ddot{y}(t)=u(t)
$$

$$
u \text { : input force }
$$

$$
y \text { : output position }
$$

- Define state variables: $x_{1}(t)=y(t), x_{2}=\dot{y}(t)$
- Then,

$$
\left\{\begin{array} { c }
{ \dot { x } _ { 1 } (t) = \dot { y } _ { 1 } (t) = x _ { 2 } (t) } \\
{ \dot { x } _ { 2 } (t) = \ddot { y } (t) = \frac { 1 } { M } u (t) } \\
{ y (t) = x _ { 1 } (t) }
\end{array} \left\{\begin{array}{c}
\frac{d}{d t}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{M}
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{array}\right.\right.
$$

Mass-Spring-Damper System

- By Newton's law
$M \ddot{y}(t)=u(t)-B \dot{y}(t)-k y(t)$
- Define state variables

$$
x_{1}(t)=y(t), \mathrm{x}_{2}(t)=\dot{y}(t)
$$

$$
\left\{\begin{array}{c}
\frac{d}{d t}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-K / M & -B / M
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 / M
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{array}\right.
$$

- $u(t)$: input voltage
- $y(t)$: output voltage
- By Kichhhoffs voltage law

$$
u(t)=\operatorname{Ri}(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int i(\tau) d \tau
$$

Define State Variables (current for inductor, voltage for capacitor):
$x_{1}(t)=i(t), x_{2}(t)=\frac{1}{C} \int i(\tau) d \tau$

$$
\left\{\begin{array}{c}
\frac{d}{d t}\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
-R / L & -1 / L \\
1 / C & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]+\left[\begin{array}{c}
1 / L \\
0
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
\end{array}\right.
$$

The End!!

